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IN DEDICATION TO THE LATE PROFESSOR OLIVIER KAHN FOR HIS POINEERING CONTRIBUTIONS TO THE FIELD OF MOLECULAR MAGNETISM
In this paper we show that a strong magnetic anisotropy
appears in exchange mixed+valence clusters containing orbitally
degenerate metal ions. Combining an e4ective Hamiltonian ap-
proach with the technique of the irreducible tensor operators
(ITO) and pseudoangular momentum representation we have
solved the problem of magnetic exchange in localized and de-
localized (mixed+valence) systems with di4erent overall sym-
metries (D2h , D3h, D4h). The energy pattern as well as the
character of the magnetic anisotropy is closely related to the
ground term of the ions, electron transfer pathways, and overall
symmetry of the system being a4ected also by the local crystal
5elds, spin+orbital interactions, and vibronic interactions.
Special attention is paid to the origin of the magnetic anisotropy
in the face+shared (D3h) binuclear unit [Ti2Cl9]

2 3. For this case
a very good agreement between calculated and measured v (T) is
obtained. ( 2001 Academic Press

Key Words: magnetic exchange; mixed-valency; orbital de-
generacy; magnetic anisotropy; vibronic interaction.

1. INTRODUCTION

Molecular assemblies containing a "nite number of ex-
change coupled magnetic ions (molecular clusters) are cur-
rently important for several areas of research such as solid
1To whom correspondence should be addressed.
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state chemistry and molecular chemistry, magnetism, and
biochemistry. In particular we are interested in the possibi-
lity of using simple molecular clusters as magnets of
nanometer size possessing the unusual magnetic properties
of superparamagnetic}like behavior and quantum tunnel-
ing of magnetization (1}6). Organic molecules containing
unpaired electrons are also being used for obtaining build-
ing blocks for molecular-based magnets (7}11). Magnetic
clusters of transition metal ions are relevant in biochemistry
(e.g., ferredoxins (12), photosystem II (13), and the storage
protein ferritin (14, 15).

The interplay between the electron delocalization and
magnetic interactions plays a crucial role in the properties
of many mixed}valence (MV) compounds of current interest
in solid state chemistry and physics (bulk magnets, super-
conductors) as well as in inorganic chemistry (heteropolyb-
lues) (16}20). Recently molecular materials exhibiting the
coexistence of these two electronic processes, for example,
the discovery of the "rst molecular material with coexist-
ence of ferromagnetism and metallic conductivity have been
reported (21).

In 1951, Zener (22) proposed a new exchange mechanism,
namely double exchange, that ferromagnetically couples
two spins through the hopping of an extra electron. This
mechanism was used by Zener to explain the ferromag-
netism observed in the manganites MV oxides, a family of
compounds that is currently creating much excitement in
8



FIG. 1. Orbital schemes for mixed-valence (a) and exchange (b) clusters.
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solid sate chemistry due to the observation of giant mag-
netoresistance. Anderson and Hasegawa (23) solved the
double-exchange problem for a dimer by deducing the
spin}dependence for the double-exchange splitting. More
recently, the concept of double exchange was applied to
more complex systems (trimers and tetramers; see review
papers (12, 24, 25)). Finally, a general solution of the prob-
lem of the double exchange was found for the high}nuclear-
ity MV clusters in which an arbitrary number of electrons
are delocalized over a network of magnetic metal sites (26).

A vast number of polynuclear compounds (exchange
clusters), low-dimensional systems, and extended magnetic
materials have been studied in the framework of the iso-
tropic exchange (Heisenberg}Dirac}van Vleck, HDDV)
model (26}33). This model is valid if the constituent ions are
orbitally nondegenerate (spin systems). For the spin systems
the anisotropic contributions (local anisotropy, antisym-
metric exchange, etc.) are relatively small and usually can be
considered in a perturbational way (24). The theory of the
double exchange, proposed by Anderson and Hasegawa,
and the subsequent studies are essentially based on the
assumption that the metal ions (in both oxidation degrees)
are orbitally nondegenerate. This assumption leads to the
conclusion that double exchange is magnetically isotropic.

The situation is quite di!erent when the orbital angular
momenta of the constituents ions are not quenched by the
low}symmetry crystal "elds such that the orbital degener-
acy remains in a high}symmetric ligand surroundings.
A model example is provided by the dimers [Ti

2
Cl

9
]~3 and

[Ti
2
Br

9
]~3 in which two trivalent titanium ions are interac-

ting through halide bridging atoms (34). Almost two dec-
ades ago, Kahn and co-workers discovered that one of the
most spectacular features of the magnetic behavior of the
[Ti

2
Cl

9
]~3 entity is the signi"cant magnetic anisotropy

(35, 36). In their paper (35) they introduced a simple form of
the orbital interaction.

For the "rst time Khomskii and Kugel derived a kinetic
exchange Hamiltonian for orbitally degenerate ions and
created a new "eld in solid state physics, namely orbital
ordering in solids (see the review paper of Khomskii and
Kugel (37) and references therein). Motivated by the work of
Kahn, Drillon and Georges (38) and, independently, Leuen-
berger and GuK del (39) developed the theory of kinetic ex-
change in dimers formed by orbitally degenerate ions (d1}d1
and d2}d2 con"gurations). Unfortunately, these simpli"ed
models proved to be of limited applicability for real systems.

In a recent paper (40) we proposed a more general ap-
proach to the problem of the kinetic exchange between
orbitally degenerate multielectron transition metal ions.
Our consideration takes explicitly into account the complex
energy spectrum of charge transfer crystal "eld states de-
duced by the Tanabe}Sugano diagrams. Taking advantage
of these symmetry arguments, we have deduced the e!ective
exchange Hamiltonian in its general form for an arbitrary
overall symmetry of the dimer that takes into account all
relevant electron transfer pathways. All parameters of the
Hamiltonian incorporate physical characteristics of the
magnetic ions in their crystal surroundings.

The application of the developed approach enabled us to
explain the magnetic anisotropy of the [Ti

2
Cl

9
]~3 binuclear

unit (41). In another paper (42) we have proposed a theory of
the double exchange in MV dimers in which one or both
transition metal ions possess orbitally degenerate ground
states. Both kinds of systems exhibit magnetic anisotropy
arising from the orbital interactions. As distinguished from
the spin systems, the magnetic anisotropy of the orbital
nature proves to be strong and manifests itself in the new
magnetic properties of the systems with orbital degeneracy.

In this paper we focus on exchange and mixed}valence
containing orbitally degenerate ions with the main emphasis
on the magnetic anisotropy. Let us begin with the relative
simple spin clusters. Figure 1 shows a sketch of the orbital
states for an MV (delocalized) dn}dn`1 dimer (Fig. 1a) and
for an exchange (localized) dn}dn cluster (Fig. 1b). In the
former case, an extra electron moves freely between two non
degenerate orbitals a and b and the e!ective transfer para-
meter is spin}dependent due to double exchange (23):

t (S)"t
0
(S#1

2
), [1]

where t
0
"t(2S

0
#1

2
). S

0
is the spin of the core and

t"Sa DhK DbT is the one}electron transfer integral (hK is the
one}particle part of the Hamiltonian). The kinetic exchange
also arises from the electron delocalization. Figure 1b illus-
trates the contribution arising from the jump from the
half-"lled orbital b

n
to the empty orbital a. As distinguished

from the MV system, this jump is constrained by the inter-
site Coulomb repulsion ; so that the exchange in the
localized system appears as a second-order e!ect:

t2(S)

;
"

t2
0
;

S (S#1)#
t2
0

4;
. [2]
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This spin dependence gives rise to the HDDV model:

H
%9
"!2JS

A
S
B
. [3]

For the subsequent considerations, it is important to note
that in MV systems containing magnetically isotropic spin
ions, the energy levels only depend upon full spin S, and are
independent of the magnetic quantum numbers M

L
. The

HDVV exchange as a second-order correction also proves
to be isotropic, and the e!ective spin Hamiltonian (Eq. [3])
contains the scalar product of spin operators.

In contrast, the orbitally degenerate ions carry orbital
angular momenta that are coupled with each other and also
with the spin subsystem. In fact, as distinguished from the
spin, the orbital states in the case of degeneracy are sub-
jected to the action of the crystal "eld so that the orbital
angular momenta cannot be freely aligned along the ex-
ternal magnetic "eld. This e!ect leads to a strong magnetic
anisotropy. By using relatively simple examples, we will
illustrate the main physical conditions determining the
character of magnetic anisotropy arising from the orbital
interactions.

2. MIXED-VALENCE DIMERS

2.1. Double Exchange in Pseudo}angular Momentum
Representation

Let us consider MV dimers of di!erent topology contain-
ing octahedrally coordinated metalions in orbitally triplet
states ¹

1
or ¹

2
(terms 2S`1¹

1
and 2S`1¹

2
) (42). The T}P

isomorphism allows us to assign ¹
1(2)

basis to the DlmT
states with l"1,

m (a)"!

1

J2
(D11T!D1!1T)

g(b)"!

i

J2
( D11T#D1!1T)

f(c)"D10T, [4]

where aJ¸
x
, bJ¸

y
, cJ¸

z
are the standard notations for

¹
1

basis; mJyz, gJxz, fJxy represents ¹
2

basis.
This transformation is of the same form as those relating

p
x
, p

y
, and p

z
functions with D lmT basis and possessing

genuine orbital angular momentum l"1.
Now we can use the following labeling for the ground

terms: SI I̧ for dn`1 ions and SMM M̧ for dn ions, with
M̧ "1( I̧ "1) for orbital triplets and M̧ "0 ( I̧ "0) for
orbital singlets.

Pseudo}angular momentum representation provides the
opportunity to apply the e$cient angular momentum tech-
nique for treating the double-exchange problem and also
provides a clear insight into the magnetic anisotropy of such
a system. We de"ne the angular momenta coupled basis
for each localization of the extra electron, namely,
DSI

A
I̧
A
, SM

B
M̧
B
, SM

S
¸M

L
T, DSM

A
M̧
A
, SI

B
I̧
B
, SM

S
¸M

L
T, where

S and ¸ are the total spin and total orbital angular
momentum of the dimer. This basis corresponds to the
Russell-Saunders scheme for pseudo}angular momenta and
spins in a dimer. It can be built with the use of the
Clebsh}Gordan coe$cients.

The calculation of the matrix element of the double
exchange for the high}spin systems with less than half "lled
shell gives the result:

(SI
A
I̧
A
, SM

B
M̧
B
, S¸M

S
M

L
DV

AB
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A
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A
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B
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S
M@

L
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1"
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2(S
0
#1)(2S

0
#1)

(S#1
2
)

]J2¸@#1 +
k/0,1,2

J2k#1 G
¸ I̧ M̧

¸@ M̧ I̧

k 1 1 H
] +

mm{

t
mm{
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CLML
L{M{Lkm~m

, [5]

where f is the phase ( f"n#2S# I̧ ! M̧ ), G
) ) )
) ) )
) ) )H is the

9}j-symbol, and S2E2E2T is the reduced matrix ele-
ment of the creation operator (42) that is to be calculated for
each particular system.

Just as in spin systems, the matrix element of the double
exchange contains the factor (S#1

2
). The consequence is

that double exchange in orbitally degenerate dimers always
results in the stabilization of the ferromagnetic spin state,
which, as for the spin MV dimers, becomes the ground state.
This conclusion proves to be general for orbitally degener-
ate systems (irrespective of their structure and ground
terms) and for spin systems. The matrix elements are inde-
pendent of the quantum number M

S
, indicating that the

spin subsystem is magnetically isotropic.
The matrix elements of the double exchange for orbitally

degenerate dimers depend on the orbital magnetic quantum
numbers M

L
, M@

L
.This dependence re#ects magnetic anisot-

ropy in the orbital subsystem arising from the double ex-
change. The character of this anisotropy is closely related to
the set of transfer integrals in Eq. [5], re#ecting both the
point symmetry of the dimer and the speci"c choice of
physically signi"cant transfer pathways. Therefore, a further
analysis of the double-exchange energy splitting and the
magnetic anisotropy requires a speci"c consideration for
each particular case.



FIG. 3. Energy diagram for 3¹
1
(t2
2
)}4A

2
(t3
2
) MV dimers: (a) D

2h
, D

3h
;

and (b) D
4h

. A short notation D$; S,M
S
; ¸"1; M

L
T,DS; M

L
T is used.
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2.2. High}Symmetric Mixed}Valence Pairs

In this section we will consider three types of high-sym-
metric systems, namely, edge-shared (D

2h
), corner-shared

(D
4h

), and face-shared (D
3h

) bioctahedral dimeric clusters.
Figure 2 pictorially represents the most important transfer
pathways. In the case of D

2h
symmetry we neglect all trans-

fer integrals except tff (Fig. 2a). In the case D
4h

only the
transfer integrals tmm"tgg are taken into account (Fig. 2b).
For the sake of simplicity we did not consider o!-diagonal
transfer pathways or less important diagonal ones (for
example, tmm for D

4h
). For D

3h
, strong transfer between

orbitals a"(1/J3) (m#g#f) directed along the C
3

axis is
taken into account (41, 43, 44) (Fig. 2c).

It follows from Eq. [5] for all these cases that M@
L
"M

L
,

and the wave functions of the system can be expressed as an
odd and even combination of the localized states:

D$SM
S
; ¸M

L
T"

1

J2
(DSI

A
I̧
A
, SM

B
M̧
B
, S¸M

S
M

L
T

$DSM
A
M̧
A
, SI

B
I̧
B
, S¸M

S
M

L
T). [6]

It should be noted that there is no one-to-one corre-
spondence between the parity of the wave functions and
signs#and!in Eq. [6].
FIG. 2. The overlap patterns related to the most e$cient transfer
pathways: (a) D

2h
, (b) D

4h
, (c) D

3h
.

Since the spin system is isotropic, the quantum number
M

S
will be omitted, such that the labels will be D$S; ¸M

L
T.

Let us "rst consider a singlet}triplet pair (one of the ions
possesses orbital singlet). Figure 3 shows the energy splitting
for a 3¹

1
(t2
2
)}4A

2
(t3
2
) pair with di!erent overall symmetries.

Providing D
2h

and D
3h

symmetries (Fig. 3a), the energy
pattern involves three pairs (#and!) of levels with
S"1

2
, 3
2
, 5
2
; the corresponding energies are $1

3
t@(S#1

2
). All

these levels correspond to M
L
"0. The spectrum also con-

tains one highly degenerate level at E"0. This level com-
prises states with all S values, each belonging to M

L
"$1.

In the case of D
4h

symmetry (Fig. 3b) we encounter, in
some sense, the reverse situation. Thus, the state with E"0
involves all S values and corresponds to M

L
"0, while all

the states with the energies $1
3
t(S#1

2
) possess M

L
"$1

The above analysis allows us to make some qualitative
conclusions concerning the magnetic behavior. As we have
seen, in all considered high-symmetric cases, the energy
levels depend on DM

L
D, so we are dealing with the axial

magnetic symmetry. One should note in this context that for
the D

2h
system this axial symmetry is obviously higher than

that expected from the point symmetry. This feature is
a consequence of the simpli"ed assumptions in the model of
transfer pathways. The components of the magnetic suscep-
tibility tensor (sE and s

M
) are de"ned with respect to the

reference axis. For D
4h

and D
3h

systems this axis is chosen to
coincide with the axis connecting the two metal sites (C

4



TABLE 1
Eigenvectors for the Dimer 3T1(t

2
2)+

2T2(t
1
2)

Label of the
level D

2h
, D

3h

(1) D!; 3
2
; 1, 0T, D#; 3

2
; 2,$2T, J2

J3
D!; 3

2
; 0, 0T# 1

J3
D!; 3

2
; 2, 0T

(2) D!; 1
2
; 1, 0T, D#; 1

2
; 2,$2T, J2

J3
D!; 1

2
; 0, 0T# 1

J3
D!; 1

2
; 2, 0T

(3) D#; S; 1,$1T, D!; S; 1,$1T, D#; S; 2,$1T, D!; S; 2,$1T,

! 1
J3

D!; S; 0, 0T#J2

J3
D!; S; 2, 0T,! 1

J3
D#; S; 0, 0T

#
J2

J3
D#; S; 2, 0T

(4) D#; 1
2
; 1, 0T, D!; 1

2
; 2,$2T, J2

J3
D#; 1

2
; 0, 0T# 1

J3
D#; 1

2
; 2, 0T

(5) D#; 3
2
; 1, 0T, D!; 3

2
; 2,$2T, J2

J3
D#; 3

2
; 0, 0T# 1

J3
D#; 3

2
; 2, 0T

Label of
the level D

4h
(1) bD!; 3

2
; 0, 0T!aD!; 3

2
; 2, 0T, aD#; 3

2
; 0, 0T!bD#; 3

2
; 2, 0T

(2) D!; 3
2
; 1,$1T, D#; 3

2
; 2,$1T

(3) bD!; 1
2
; 0, 0T!aD!; 1

2
; 2, 0T, aD#; 1

2
; 0, 0T#bD#; 1

2
; 2, 0T

(4) D!; 1
2
; 1,$1T, D#; 1

2
; 2,$1T

(5) D$; S; 1, 0T, D#; S; 2,$2T, D!; S; 2,$2T
(6) D#; 1

2
; 1,$1T, D!; 1

2
; 2,$1T

(7) aD!; 1
2
; 0, 0T#bD#; 1

2
; 0, 0T, bD#; 1

2
; 0, 0T!aD#; 1

2
; 2, 0T

(8) D#; 3
2
; 1,$1T, D!; 3

2
; 2,$1T

(9) aD!; 3
2
; 0, 0T#bD#; 3

2
; 2, 0T, bD#; 3

2
; 0, 0T!aD#; 3

2
; 2, 0T

Note. The following notations are used: D$; S,M
S
; ¸; M

L
T,

D$; S;¸; M
L
T, a"J1

2
!

J2

3
, b"J1

2
#

J2

3
.
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and C
3

axes, respectively). In the D
2h

case this axis is
perpendicular to the plane containing the common edge of
the two octahedral sites (Z

A
, Z

B
C

2
axis in Fig. 2a). The spin

part of the magnetic susceptibility is obviously isotropic and
we must analyze the anisotropy arising from the orbital part
*s"s03"E !s03"

M
.

The ground state for D
2h

and D
3h

dimers corresponds to
M

L
"0; hence, in these cases s03"E "0 at low temperature.

s03"
M

appears as a second-order e!ect due to the mixture of
the ground state with these excited states having the same
spin and parity via a Zeeman term in a perpendicular "eld
(nonvanishing matrix elements S!; 5

2
, 0 DL

x
D!; 5

2
, $1T

" 1J2
). Compared to the spin part, the orbital contribution

to the susceptibility is expected to be small and the magnetic
anisotropy, *s, is negative in this case.

In the D
4h

case, the situation is di!erent because there is
a strong "rst-order contribution to s03"E arising from the
M

L
"$1 ground state. This "rst-order orbital e!ect is

strong and comparable with the spin part of susceptibility.
The perpendicular Zeeman term mixes the ground state
with the state D!; 5

2
, 0T giving rise to the second order s03"

M
.

As a result one can expect a magnetic anisotropy with
a positive *s.

Figure 4 represents the energy patterns for the triplet}
triplet pair 2¹

2
(t
2
)}3¹

1
(t
2
); the eigenvectors are given in

Table 1. One can see that the energy levels are accidentally
degenerate and the ground state for D

2h
, D

3h
contains

a magnetic state with ¸"2 and DMD"2 giving rise to
a "rst-order orbital Zeeman e!ect in parallel "eld (*s'0).
One can see that the sign of *s in the system with a given
overall symmetry for the triplet}triplet pair is reversed with
respect to that for the singlet}triplet pair. In contrast, for the
FIG. 4. Energy diagram for 3¹
1
(t2
2
)}2¹

2
(t1
2
) MV dimers: (a) D

2h
,

D
3h

cases and (b) D
4h

. The eigenvectors are given in Table 1.
D
4h

system the ground state is expected to possess a second-
order magnetic e!ect, so that *s(0. As in the previous
cases the triplet}triplet pair exhibits axial magnetic anisot-
ropy.

Summarizing the results of this section we note that
double exchange in orbitally degenerate systems produces
ferromagnetic spin alignment and the same spin dependence
of the energy levels as in spin systems. At the same time, the
double exchange in the presence of orbital degeneracy re-
sults in a strong magnetic anisotropy of orbital nature. For
this reason, it can be termed as anisotropic double exchange.
The character of the magnetic anisotropy in a MV pair is
closely related to the ground terms of the constituent ions,
transfer pathways, and overall symmetry of the system. It
should also be noted that this qualitative analysis of the
magnetic anisotropy proved to be possible due to the use of
a pseudoangular momentum representation attributing to
the system a set of relevant quantum numbers.

2.3. Inyuence of the Vibronic Coupling
on the Magnetic Anisotropy

The vibronic interaction in MV compounds is usually
important so that manifestations of the mixed valency are
closely related to the strength of the vibronic coupling. In
order to illustrate (at least at the qualitative level) the main



FIG. 5. Suppression of the magnetic anisotropy by PKS vibration as
illustrated by the singlet}triplet pair in the D

4h
system.
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e!ects of the vibronic coupling we will use a vibronic model
that assumes the local breathing modes (PKS, (45)) but that
includes also the intercenter vibrations changing the
metal}metal distance (46). Such a type of vibronic model
was used in our paper (47) to study the adiabatic potentials
and localization}delocalization e!ects in spin-dimers. Re-
maining within the scope of this simpli"ed model we do not
intend to discuss here the applicability of the theory operat-
ing with two vibronically independent subunits (see Ref.
(45)). We also omit from our discussion the role of the local
Jahn}Teller vibrations. This problem will be discussed else-
where.

In order to inspect the role of the vibronic e!ects in the
context of the magnetic properties we will restrict ourselves
to the simplest case of the singlet}triplet pair (considered in
Section 2.1). Let us denote the coordinate of the out-of-
phase PKS vibration as q and that for the intercenter
vibration as Q. The PKS interaction mixes the states with
the same quantum numbers S, M

S
, M

L
and opposite parity,

thus leading to the pseudo-Jahn}Teller e!ect. On the other
hand, the interaction with the Q mode is diagonal in the
Dp, S; M

L
T basis. In fact, this interaction leads to a modula-

tion of the transfer integrals t and t@ due to the changes of the
intermetallic distances (see (46, 48)). The S, M

L
block of the

adiabatic potentials involving the interactions with the di-
mensionless q and Q vibrations can be presented as (49):

D
2h

:;S;ML
$

(q, Q)"1
2
(uq2#)Q2)

$C
1

9
(t!jQ)2 (1!DM

L
D (S#1

2
)2#1

2
v2q2D

2

D
4h

:;S;ML
$

(q, Q)"1
2
(uq2#)Q2)

$C
1

9
(t!jQ)2 ( DM

L
D ) (S#1

2
)2#1

2
v2q2D

2
, [7]

where u and ) are the frequences of the q and Q modes,
respectively, and j and v are the coupling parameters for the
intercenter and PKS vibrations. For both topologies under
consideration the energy pattern contains the unsplit level
e"0 comprising all S states with M

L
"$1 for D

2h
and

M
L
"0 for D

4h
. These levels give rise to the intersected

paraboloids shifted along the q axis toward the points

$(0/uJ2) (Q"0). The remaining surfaces belong to de"-
nite S values and their shapes are quite similar to those
studied in detail in the problem of double exchange (47). Let
us summarize the main features of these adiabatic surfaces
responsible for the magnetic behavior of the system.

Providing strong PKS coupling, 02/2u'j2/9) (S#1
2
)2,

and comparatively weak transfer, t/3 (S#1
2
)(

02/2u!j2/9) (S#1
2
)2, we are dealing with a double-well

surface so that in each minimum the excess electron is
localized. In the case of strong PKS coupling and strong
transfer t/3 (S#1

2
)'02/2u!j29) (S#1

2
)2, the surface

possesses a single minimum with shifted Q and the excess
electron is fully delocalized. Finally, in the case of weak PKS
coupling, 02/2u(j2/9) (S#1

2
)2, the system is fully de-

localized independently of the rate of transfer.
Let us consider the in#uence of breathing and intermetal-

lic vibrations separately. Figure 5 represents the section
Q"0 of the full adiabatic surface for S"5

2
of the singlet}

triplet pair in the D
4h

case (these levels are extracted from
the full set of levels depicted in Fig. 3b). Due to the prefer-
ence in the Jahn}Teller stabilization of the M"0 central
level with respect to those for M"$1, the gap 2t between
the levels D#; 5

2
;$1T and D!; 5

2
; $1T proved to be com-

pressed in the deep minima. The resulting levels in these
minima contain all sublevels M

L
"0,$1 belonging to

¸"1, and of course S"5
2

(6P atomic level). In this way we
arrive at the conclusion that the vibronic PKS coupling
suppresses the magnetic anisotropy of the system.

Figure 6 illustrates the section q"0 of the adiabatic
surface for the selected S"5

2
spin state. One can see that the

intercenter vibration stabilizes the ground state with
M

L
"1 with respect to that with M

L
"0. In fact, in the deep

minimum associated with M
L
"$1 the corresponding gap

*E
.*/

is strongly increased with respect to the initial (Q"0)
gap, t, produced by the double exchange. This can be con-
sidered as an increase in the anisotropy. This is not a sur-
prising result because the intercenter vibration e!ectively



FIG. 6. Enhancing the magnetic anisotropy by the intercenter vibra-
tion Q, as illustrated by a singlet}triplet pair in D

4h
symmetry.

FIG. 7. Adiabatic surfaces for selected spin states of a singlet}triplet
MV pair in D

4h
(t"1, v"2.5, j"1); all values are given in )"u units).
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increases the double exchange that is the origin of the
magnetic anisotropy in the case of degeneracy.

We have considered in a qualitative manner the e!ects of
two kinds of vibrations independently by crossing the
three-dimensional adiabatic surface ;(q,Q) in two direc-
tions. At the same time (as already mentioned in (47)) the
breathing and intercenter vibrations are competitive. The
conditions for the existence of localized (strong PKS coup-
ling) or delocalized (strong coupling with the intercenter
vibration) are spin-dependent. In Fig. 7 we present the
picture of the adiabatic surfaces belonging to several spin
states of the singlet-triplet pair in D

4h
symmetry.

Figure 7 illustrates the case when the low branch of the
full adiabatic surface ;

~
(q, Q) has delocalized minima only

for the S"5
2

states. Due to the large gap between two S"5
2

levels, PKS coupling is reduced and the system proves to be
trapped in this delocalized state. At the same time for S"3

2
and S"1

2
pairs we observe two minima (intercenter coup-

ling is reduced) in which the system is partially localized due
to the coupling with PKS vibrations. In the present case the
used values of the vibronic parameters (t"1.0, v"2.5,
j"1) favor an increase in the magnetic anisotropy due to
the stabilization of the M

L
"state. The calculation of sE and

s
M

for the anisotropic double exchange systems is given in
(49).

3. MAGNETIC EXCHANGE IN THE CASE
OF DEGENERACY

3.1. Ewective Hamiltonian of the Magnetic Exchange

A new approach to the problem of the magnetic exchange
for orbitally degenerate ions was recently developed in our
laboratories (40, 41). In these studies, the constituent multi-
electron ions were assumed to be octahedrally coordinated,
and a strong cubic crystal "eld scheme was employed,
enabling us to take advantage of the symmetry properties of
the fermionic creation and annihilation operators and
multielectron wave functions of the metal ions. In the frame-
work of this microscopic approach, the e!ective Hamil-
tonian of the kinetic exchange was built. As distinguished
from the previous studies, this Hamiltonian was derived for
the general case of multielectron ions and arbitrary topol-
ogy of the system implied by a set of the electron transfer
parameters. The Hamiltonian was constructed in terms of
spin operators and orbital cubic irreducible tensor oper-
ators acting in the orbital subspace.

Along with the isotropic spin}spin exchange (HDVV
term) this Hamiltonian includes terms like O!AcA O!BcB S

A
S
B

where O!AcA and O!BcB are the orbital matrices de"ned in
the space of the orbitally degenerate functions belonging to
the constituent ions. The labels !

A
and !

B
are the irredu-

cible representations contained in a direct product !]!,
with 2S`1! being the ground term. c

A(B)
are labels for the

basis. For example, for the orbital triplets ¹
2
,

¹
2
]¹

2
"A

1
#E#¹

1
#¹

2
and we have nine matrices

O!A(B)cA(B)
. These 3]3 matrices are given in (41). Here we want

only to stress that in general they do not commute with
Ķ 2 and ¸

z
, so the full Hamiltonian containing these matrices

is magnetically anisotropic.
In paper (50) we suggested the use of a pseudoangular

representation for the orbital triplets (¸"1 for ¹
1

and
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¹
2

terms) and the technique of the irreducible tensor oper-
ator in a spherical group (ITO) for treating the Hamiltonian
containing orbital matrices. This approach provides an e$-
cient way for the calculating the energy levels and allows us
to label them in terms of spin and atomic orbital quantum
numbers using the Russell}Saunders coupling scheme for
the pseudoangular orbital momenta. This approach is quite
similar to that described in Section 2 for MV systems. In the
following subsection we will illustrate the results of the
application of this approach to analyze the magnetic anisot-
ropy of high-symmetric systems.

3.2. Corner}Shared (D
4h

) d1}d1 Dimers

We will illustrate the results taking as an example the
simple case of d1 ions (2¹

2
}2¹

2
system) for which all para-

meters of the orbitally dependent exchange Hamiltonian are
calculated analytically (40).

The tmm"tgg,t transfer integrals (Fig. 2) are taken into
account, and the crystal "eld and Racah parameters are
given in (51). In paper (50) we considered the exchange
Hamiltonian using ITO; the local crystal "elds (C

4v
) and the

spin}orbit coupling as well as the Coulomb repulsion be-
tween un"lled shells, were also taken into account. The
energy pattern arising from the exchange is given in Fig. 8,
where the labels of the irreducible representations of D

4h
are

given along with the labels DSM
S
; ¸M

L
T,DS; ¸M

L
T. The

ground state 1 proves to be a spin triplet belonging to ¸"1,
M

L
"0 so that at low temperature only a small magnetic

spin anisotropy could be expected. The next two levels (2
and 3) are the spin singlets corresponding to ¸"2. These

states are (D0; 2!2T$D0; 2 2T)/J2. Each one of these
FIG. 8. Exchange splitting in the corner}shared (D
4h

) cluster consisting
of one-electron ions D$; S,M

S
; ¸,M

L
T,D$; S; ¸,M

L
T.
states is orbitally nonmagnetic (all matrix elements of L
z
,

L
x

and L
y

vanish). Nevertheless, it should be noted that
levels 2 and 3 are very close, due to the fact that the 1E and
1¹

2
charge-transfer states are almost degenerate (see the

Tanabe}Sugano diagram for d2 (51) and the discussion
concerning the exchange parameters in Ref. (40)). In fact for
the set of crystal "eld parameters (D

q
, A, B, and C) used here

the gap *E
23

proves to be equal to 0.02 cm~1 (this gap is
arti"cially increased in Figs. 8 and 9), which is much less
than Zeeman energy (+0.1!1 cm~1). Under these condi-
tions these two levels are fully mixed, giving rise to a "rst-
order orbital magnetic splitting when the "eld is applied
parallel to the C

4
axis (the functions are D0; 2$2T). At the

same time, the "rst-order perpendicular magnetization van-
ishes and appears only as a second-order e!ect. Hence, the
orbital contribution to the magnetic susceptibility is fully
anisotropic. Levels 5 and 6 show a "rst-order contribution
to the orbital magnetic moment along the C

4
axis but no

"rst-order contribution in the perpendicular "eld. Finally,
the same conclusion can be drawn about the accidentally
degenerate level 7, comprising two spin singlets and four
spin triplets. One can see also that all matrix elements
S1; 1 0 D Ķ

z
D excited statesT vanish, so that one cannot expect

the second-order orbital contribution in s03"E . Nonvanishing
orbital contribution may appear only due to the spin}orbit
mixing of the ground state D1; 1 0T with the excited ones
(levels 5 and 6). At the same time the matrix element
S1; 1 0 D Ķ

x,y
D1; 1$1T is di!erent from 0. This gives rise to

a second-order contribution to s03"
M

. Therefore, at low tem-
perature, it is expected that s03"

M
's03"E . With the increase of

temperature levels 2 and 3 become populated, giving rise to
a "rst-order e!ect with strong s03"E and small second-order
s03"
M

, the last results from the mixing of levels 2 and 3 with
level 6 ( D0; 2$1T). Summarizing, one can conclude that the
exchange Hamiltonian for the 2¹

2
}2¹

2
pair is completely

anisotropic in the sense that s03"E appears as a "rst-order
e!ect, meanwhile s03"

M
proves to be a second-order e!ect.

Figure 9 shows the in#uence of the tetragonal crystal "eld
distortion with *'0 (ground state of each ion is B

2
(f)). The

increase of * changes the ground state D1; 1 0T into the
paramagnetic mixture of spin}triplet and spin}singlet states
as shown in Fig. 9. These two states arise from the ground
states f

A
and f

B
as a result of the strong crystal "eld

splitting. Since in the initial model weak f
A
%f

B
transfer has

been neglected, the exchange e!ect in the ground manifold
vanishes. As one can see, both states possess M

L
"0 so that

"rst-order s03"
M

"s03"E "0 and second-order e!ect in s03"
M

de-
creases with the increase of crystal "eld. If a small f

A
%f

B
transfer is assumed, the ground level is split antiferromag-
netically as one would expect for a dimer with two half-
occupied orbitals (this is schematically shown by the dotted
line in Fig. 9). In the low-temperature limit, the full magnetic
susceptibility only contains the orbital part with s03"

M
being a second-order e!ect and s03"E "0. Second-order



FIG. 9. E!ect of local tetragonal crystal "eld on the energy pattern of
the 2¹

2
}2¹

2
dimer (D

4h
).

FIG. 10. Energy pattern of the face-shared 2¹
2
}2¹

2
system as a func-

tion of t
a
/t

e
.
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s03"
M

(Van Vleck paramagnetism) can be easily estimated. In
fact, the orbital part of Zeeman interaction mixes the

ground state (!D0; 0 0T#J2 D0; 2 0T)/J3) only with the
states D0; 2$1T belonging to the multiplet 6; the corre-
sponding matrix elements are

S0; 0 0 D Ķ
x
D0; 2$1T"0

S0; 2 0 D Ķ D0; 2$1T"J3
2
. [8]

One can easily obtain the second-order Zeeman coe$c-
ient and "nd s

M

s
M
(¹"0)"

4Nb2k2

E
6
!E

7
#3*

, [9]

where k is the orbital reduction factor. Due to the spin}orbit
mixing of the ground state with the excited ones a sE contri-
bution appears, but this is small if the crystal "eld splitting is
strong enough so that s

M
'sE. This conclusion illustrates

that the low-symmetry crystal "eld can reverse the sign of
the orbital part of the magnetic anisotropy arising from the
orbitally dependent exchange interaction.

This analysis once again illustrates that the angular mo-
mentum approach is not only an e$cient computational
tool, but is also of great help in the understanding of the
magnetic properties (especially the magnetic anisotropy).

3.3. Face-Shared (D
3h

) d1}d1 Dimers. Magnetic
Anisotropy of [¹i

2
Cl

9
]~3

In the present section, we apply the e!ective Hamiltonian
deduced in (41) to the case of the face-shared bioctahedral
d1(2¹
2
)}d1(2¹

2
) dimer (with overall D

3h
symmetry).

Trivalent titanium ions form this type of well isolated dimer
in the crystal structure of Cs

3
Ti

2
Cl

9
(35, 52) and Cs

3
Ti

2
Br

9
(34) whose magnetic and spectroscopic properties were
a subject of the discussion for a long time (31, 36, 39,
43, 44, 53). The full e!ective Hamiltonian for a face-shared
dimer was deduced in paper (41). The t

a
(Fig. 2) and t

e
transfer integrals were taken into account (t

e
are formed by

e-orbitals that are perpendicular to C
3

axis in D
3h

) (43).
In the previous section we have restricted the considera-

tion by the most e$cient transfer pathways only. In order to
study the dependence of the degree of anisotropy upon the
transfer integrals we have included both types of integrals,
t
a

and t
e
, in the calculation. Figure 10 shows the calculated

energy levels as a function of the ratio t
e
/t
a

in the range
!14t

e
/t

a
41. One can see that the energy pattern is

symmetric with respect to the change of the sign of t
e
/t
a
. In

a wide range of the ratio t
e
/t

a
, the ground state is the spin

singlet 1A@
1
. Only at t

e
/t
a
'0.9 (t

e
/t

a
(!0.9) does the or-

bital doublet 3E@ (3EA) become the ground state. The highest
excited state is accidentally degenerate and comprises sev-
eral multiplets, mainly spin triplets. It is to be noted that,
except in the extremes of the diagram, the exchange splitting
(except terminal parts of the diagram) is almost independent
of the ratio t

e
/t
a

and mainly depends on t
a
.

Three special high-symmetric cases are seen in Fig. 10,
namely:

(i) Pseudospherical case: t
e
/t
a
"1 (t

a
"t

e
"t, t@"0),

(ii) Spherical case: t
e
/t

a
"!1 (t"!t

a
/3, t@"!2t),

(iii) Axial case: t
e
/t
a
"0 (t"t@"t

a
/3).

In each of these cases, the energy pattern exhibits a high
degree of accidental degeneracy, a clear indication that the
e!ective Hamiltonian belongs to a more general symmetry



FIG. 11. Energy pattern of the face-shared 2¹
2
}2¹

2
system in the spherical (left-side labels) and pseudospherical (right-side labels) limits.
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group than the point symmetry group D
3h

. The terms
pseudospherical, spherical, and axial are closely related to
the magnetic anisotropy and will be clari"ed below.

Let us consider "rst the cases (i) and (ii). Since the diagram
is symmetric, the energy patterns for spherical and pseudos-
pherical limits are the same. This is depicted in Fig. 11,
where the terms for cases (i) and (ii) are shown on the right
and left sides correspondingly. The exchange parameters
J
1
2J

4
are given in (41).

As in the previous cases, the Hamiltonian, expressed
in terms of the ITO, acts within the basis set
D¸

A
¸
B
S
A
S
B
, SM

S
¸M

L
T,DSM

S
, ¸M

L
T with "ctitious

¸
A
"¸

B
"1 and ¸"0, 1, 2 (Russell}Saunders coupling

scheme).
Let us start with the pseudospherical case (i). The ground

level comprises two terms, 3A@
2
and 3E@, that can be asso-

ciated with D1; 10T and D1; 2$1T functions. Let us consider
the anisotropy coming from the orbital contributions. One
can see that D1; 2$1T states lend a strong orbital contribu-
tion to sE, meanwhile the matrix elements of ¸

x
and ¸

y
disappear within the ground manifold (¸"1 for3A@

2
and

¸"2 for3E@ ). Inspecting all DS; ¸M
L
T labels one can see

that the operator ¸
z

has nonvanishing matrix elements
within all levels with M

L
O0 (¸"1, 2). In contrast, the

matrix elements of ¸
x
and ¸

y
vanish within each exactly and

accidentally degenerate level in Fig. 11. The matrix elements
of these operators also vanish within the basis belonging to
six low-lying levels. The nonvanishing matrix elements link
only the low-lying states with the highest group of states.
For these reasons, the perpendicular component of the
orbital part of the magnetic susceptibility appears as the
second-order e!ect. Hence one can expect that sE's

M
, so
the magnetic anisotropy de"ned as *s"sE!s
M

proves to
be positive.

Finally we would like to underscore the point that each
level in case (i) is (2M

L
#1)-fold degenerate (like in a spheri-

cally symmetric system) but does not correspond to a de"-
nite value of ¸"M

L.!9
(for example, ¸"1 and ¸"2 in the

ground state with M
L
"!1, 0, 1) as indicated in Fig. 11.

For this reason we refer to this case as the pseudospherical
(but not spherical) limit. Indeed, from the point of view of
magnetic anisotropy discussed thus far, this case should be
referred to as completely anisotropic. It is to be noted that
the pseudospherical limit occurs under the spherical condi-
tion t

a
"t

e
for the transfer integrals.

Next let us consider now the spherical case (ii). The energy
levels are the same as in the previous case (Fig. 10), but the
wave functions are di!erent (see labels in the left part of
Fig. 11). The general feature of this energy pattern is that
each level can be associated with one or several atomic
terms S¸ as shown in Fig. 11. In fact, the ground state
containing accidentally degenerate levels 3A@

2
(D1; 10T),

3EA(D1; 1,$1T) can be regarded as an atomic term with
¸"1 and S"1 (3P); the "rst excited state possesses ¸"2
and S"0 (1D), etc. This shows that, unlike the previous
case, the system in the limit t

a
/t

e
"!1 is magnetically

isotropic. Therefore this case can be referred to as the true
spherical limit.

The last case we consider here is the axial limit (t
e
"0).

In this case the ground state is the orbital and spin singlet
state 1A@

1
(which corresponds to the wave function

! 1
J3

D0; 00T#J2
3
D0; 20T "n pseudo-angular momentum

representation. The "rst excited group of levels consists of
two closely spaced sublevels. One of them (lower) comprises
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spin triplets 3E@, 3EA, and another spin singlets 1E@, 1EA.
Finally, the highest level comprises both spin triplets and
spin singlets. Since M

L
"0 and S"0 in the ground state,

sE"0 in the low temperature limit. At the same time,
s
M

appears as a second-order e!ect (temperature-indepen-
dent Van}Vleck paramagnetism) due to the mixing of the
ground state with the excited states D0; 2$1T (1EA) through
the orbital part of Zeeman interaction. The anisotropy
*s proves to be negative, i.e., it has the reverse sign with
respect to the pseudospherical case.

This conclusion about negative magnetic anisotropy is
valid also for the range of t

e
/t
a
(Fig. 10) in which the ground

term is 1A
1

(superposition of D0; 00T and D0; 20T). When 3EA
(t
e
/t

a
(!0.9) or 3E@ (t

e
/t
a
'0.9) are the ground terms

(M
L
"$1), *s is positive. In all cases (with the exception

of the true spherical limit t
e
/t
a
"!1) the magnetic anisot-

ropy is axial ( DM
L
D is a good quantum number) and *s

dependson the ratio t
e
/t
a
.

The correlation diagram in Fig. 12 illustrates how the
pattern of the energy levels formed by the orbitally depen-
dent exchange interaction in the 2¹

2
!2¹

2
-pair in the

pseudo spherical limit is modi"ed under the in#uence of the
trigonal crystal "eld provided *(0 (orbital singlet 2A

1
in

the ground state of each ion). As one can see from Fig. 12,
the trigonal "eld partially removes the accidental degener-
acy of the exchange multiplets contributing anti ferromag-
netically to the low-lying group of levels. The increase of the
absolute value of the trigonal "eld parameter D*D leads to the
crossing of the spin levels 1A@

1
and 3E@ so that the system

becomes antiferromagnetic, even for a very weak trigonal
"eld. In the limit of a strong trigonal "eld, the low-lying
FIG. 12. In#uence of the local trigonal "eld (*(0) on the energy
pattern of the 2¹}2¹ face-shared system in the pseudospherical limit.
group of levels proves to be well isolated and consists of the
orbitally nondegenerate spin singlet 1A@

1
(ground) and the

spin triplet 3AA
2
; the energy separation between them is

found to be e (3AA
2
)!e (1A@

1
)"!(J

1
#J

3
). This pair of

levels can be described by the isotropic HDVV Hamiltonian
!2J

%&&
S
A
S
B

with J
%&&
"1

2
(J

1
#J

3
). The exchange interac-

tion proves to be antiferromagnetic.
Concerning the in#uence of the trigonal "eld on the

magnetic behavior, two points should be mentioned. First,
the trigonal "eld should strongly reduce the magnetic sus-
ceptibility because of the stabilization of the state 1A@

1
that

carries neither spin nor orbital magnetic moment. Second,
the trigonal "eld tends to change the sign of the anisotropy.
At the low temperatures sE tends to 0, meanwhile s

M
tends to

the nonzero value due to a second-order Zeeman e!ect. In
fact, inspecting the S; ¸M

L
labels in Fig. 12 one can see

that the ground state 1A@
1

(! 1J3
D0; 00T#J2

3
D0; 20T) can

mix through ¸
M

with the state 1EA (D0; 2$1T), whereas
¸
z
cannot mix the ground state with the excited states. With

the further increase of D*D the second}order e!ect decreases
and the system becomes more isotropic.

In order to restrict the number of the adjustable para-
meters in the "tting of the experimental data we will use the
ratio of two transfer integrals t

a
and t

e
extracted from the ab

initio calculations of Ceulemans et al. (44). They roughly
estimated this ratio as t

a
/t
e
+!6.5 (!7 in Refs. (43, 53)).

In the best "t procedure we use the same values for the
crystal "eld and Racah parameters as in Section 3,
j"155 cm~1, and vary t

a
, *, and k. Figure 13 displays the

experimental temperature dependencies of sE and s
M

for
Cs

3
Ti

2
Cl

9
obtained by Briat et al. (35) and the theoretical

curves. The best "t is achieved for t
a
"!5208 cm~1,

*"!320 cm~1, and k"0.71. One can see that the theor-
etical curve for s

M
is in excellent agreement with the experi-

mental data in the low-temperature region (below 170 K).
The calculated sE at low temperature is in satisfactory agree-
ment with the experimental values. It is also remarkable
that the theory reproduces the slopes of sE and s

M
very well.

It should be emphasized that nonvanishing sE appears only
due to allowance for the spin}orbital interaction. Another
important feature of the magnetic behavior of Cs

3
Ti

2
Cl

9
is

the temperature dependence of the magnetic anisotropy.
Figure 13 (inset) shows that, in a good agreement with the
experimental data, *s

5)%03
remains constant below 100 K

and decreases with the increase of ¹ at ¹'150 K.

4. CONCLUDING REMARKS

In this paper we have attempted to analyze some conse-
quences of the orbital degeneracy in highly symmetric
dinuclear systems. We have considered delocalized (mixed-
valence) and localized (exchange) systems. The use of the
concept of an orbitally dependent exchange Hamiltonian



FIG. 13. Magnetic behavior of the [Ti
2
Cl

9
]~3 unit: comparison with

the theoretical curve (solid line) calculated at t
e
/t

a
"!0.154,

t
a
"!52028 cm~1, *"!320 cm~1, j"155 cm~1 and orbital reduc-

tion function k"0.71. (Inset) Temperature dependence of the degree of
anisotropy, compared with the theoretical curve (solid line).
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and pseudoangular momentum representation (based on
the technique of ITO) allowed for the calculation of the
energy pattern of MV and exchange clusters and to assign
to the energy levels the labels of angular orbital momenta.
This provides clear insight into the magnetic anisotropy of
the systems arising from the orbital interactions. The main
manifestation of the orbitally dependent exchange and an-
isotropic double exchange is the appearance of a strong
magnetic anisotropy in the system. The energy pattern and
the character of the anisotropy are speci"c for each kind of
MV or exchange coupled pair. They are closely related to
the ground states of the constituent ions, transfer pathways,
and overall symmetry of the system. The vibronic interac-
tion with breathing modes in mixed-valence systems sup-
presses the magnetic anisotropy, while the coupling with the
intercenter vibration increases the magnetic anisotropy.
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